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range 2 < L/,, d 3 )~m are rehable Ibr LDV mcasurcments in 
these conditions. 

The conditions at impact are given in F’ig. 3. The ratio 
(4I/4,.) between the angle (b that the particles impact the 
cylinder and the corresponding one they enter the boundary 
layer. is of the order of I. increasing towards 1.5 for the 
larger particles. The angle of impact /I’ (with respect to the 
local tangent on the cylinder) is nearly 90 for the smaller 
particles and drops almost linearly to 30 for the larger ones. 
The ratio of the particle momentums between impact and 
the initial point. is of the order of 5 154:). the particles 
nearer to the axis exhibiting a larger reduction. The particle 
temperature at impact for the smaller particles is close to r, 
(indicative of a very fast cooling) but for the larger particles 
is somewhat in the middle between T,, and T, 

CONCLUSIONS 

The deposition of sub-micrometre ash particles near the 
leading edge of cylindrical surfaces. under conditions rep- 
resentative of gas turbine blades and boiler superheater tubes 
has been investigated by calculating their trajectories and 
impact conditions. 

The results indicate : 

(i) The influence of the thermophoretic force is drastic. 
Use of sub-micrometre particles in LDV measurements in 
such How fields should be avoided. 

(ii) Such particles upon entering the boundary layer are 
attracted very quickly towards the surface. Their momentum. 
however, has been reduced significantly at impact, although 
their temperature is somewhere in the middle between the 
inviscid flow temperature and the wall temperature. Thus, 
although they impact in a normal direction, they do not have 
enough momentum to rebound. 

(iii) The capture height of these particles is very small. 
when compared to the cylinder radius, being of the order of 
0.001. 
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1. INTRODUCTION teristics of axially varying heat transfer in this geometry, 
although such characteristics are required for the design of 

IN REGARD to the laminar-flow heat transfer to a fluid flowing 
multitubular heat exchangers for highly viscous liquid and 
rod-bank regenerators. 

axially between cylinders, several analytical [I. 21 and Thus, in the previous paper [6], the characteristics of axi- 
numerical [335] asymptotic solutions applicable in the region 
of large axial distance are available for a triangular array [I- 

ally varying heat transfer to a fluid flowing axially between 

51 and a square array [5] of cylinders with a uniform wall 
a triangular array or a square array of cylinders with a 

temperature peripherally and a uniform wall heat flux axially 
uniform peripheral and axial wall temperature were analyzed 

[ 1, 2, 41, and with a uniform wall heat flux peripherally and 
using a finite-difference technique. Here, attention is directed 

axially [2-51. However, little is known about the charac- 
to analyzing the case of cylinders with a uniform peripheral 
and axial wall heat flux. 
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NOMENCLATURE 

dimensionless flow area per cylinder 
(equation (11)) 
coefficient and exponent, respectively 
(equation (19)) 
heat capacity of fluid at constant pressure 
[J kg-‘K-‘1 
diameter of cylinder [m] 
functions of D (equations (15) and (16), 
respectively) 
local Graetz number, wc,/(kz) 
local heat transfer coefficient, q,/(?, - to) 
[Wm-‘Km’] 
thermal conductivity of fluid 

[Wm 1 -I K-1 
local Nusselt number, h&,/k 
wall heat flux [W mm ‘1 
dimensionless radial coordinate, r/r,, 
radial coordinate [m] 
radius of cylinder [m] 
half pitch between cylinders [m] 
dimensionless temperature, 

(r-Ml(q,r& 
temperature [K] 
dimensionless axial velocity, v/v, 
axial velocity of fluid [m s- ‘1 
mean axial velocity of fluid [m s- ‘1 
mass flow rate of fluid per cylinder 

Greek symbols 
a thermal diffusivity of fluid 

[m’ s- ‘1 
E volume fraction of cylinders 

(equation (13)) 

n interior division ratio of local Nusselt 
number (equation (17)) 

I3 angular coordinate [rad] 
o+ opening angle of analytical element 

(equation (6)) [rad] 

P density of fluid [kg m- ‘1 
0 pitch-to-diameter ratio, s/r, (= 2s/d,) 

dJ dimensionless spacing between cylinders, 
a-l. 

Superscript 
.? peripherally averaged, 5:’ x dO/P 

Subscripts 
b fluid bulk mean 

: 
cylinder wall 
inlet, asymptote for small z 

a asymptote for large z. 

[kg s- ‘I 
dimensionless axial coordinate, za/(r~c,) 
axial coordinate [ml. 

Abbreviations 

WI square array 
FA] triangular array. 

2. MATHEMATICAL FORMULATION AND The dimensionless velocity V was evaluated from the ana- 
METHOD OF NUMERICAL ANALYSIS lytical expression presented by Sparrow and Loeffler [7] by 

The analytical system and coordinates are shown in Fig. 
using recalculated and newly calculated coefficients in the 

I. The following assumptions are made for the analysis of 
expression as shown in ref. [6]. 

laminar-flow heat transfer to a fluid flowing axially between 
a triangular array or a square array of cylinders of diameter 
d,, radius ro. length z, and spaced 2s apart : (1) there is a 
uniform peripheral and axial heat flux qw on the wall of each 
cylinder in the heat transfer region (z 3 0) ; (2) the fluid 
enters the heat transfer region at a uniform temperature 
to and flows through the heat transfer region with a fully 
developed laminar-flow velocity distribution; and (3) axial 
heat conduction through the fluid is negligible in comparison 
with the convective transfer. 

Under these assumptions, the dimensionless energy equa- 
tion and the dimensionless thermal boundary conditions take 
the form : 

Triangular array 

/ / 1 
R = 1; aTjaR = - 1 (3) 

R = R+ ; (aTjaR) cos &(aT/dB)(sin 0/R) = 0 (4) 

0 = 0,B = f3f ; f?T/ae = 0 (5) 

where 

J,=:, T=1-t, o=S 
&I qyrOlk’ 

R=I Z=;, 
r0 ’ rot, ro (6) 

R+ = ojcos 8, 0’ = 7116 [TA], O+ = 7114 [SA] 
I 

[TA] or [SA] represents a triangular array or a square array 
of cylinders, respectively. 

&-@ , ’ 

: ,Y ’ 
L ’ ’ A I=_“A__ __Y z 

n/4 

I Q!!? 
r 

r. t-d--. 
2s 

Square array 

FIG. 1. Analytical system and coordinates 
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The local Nusselt number Nzr,,,, is given by 

where r, is the dimensionless peripherally averaged tem- 
perature on the wall of the cylinder and 7’, the dimensionless 
bulk temperature given by 

The local Graetz number G;,,, may be defined as 

G--i,, = icc,,/(X-;) = A/Z (9) 

where w and A respectively represent the mass flow rate of 
fluid per cylinder and the dimensionless cross-sectional flow 
area per cylinder given by 

iv = t,,pr:A (10) 

A = 2J?cr-n [TA]. A = ~CJ-n [SA]. (11) 

In the region of large local Graetz number (z--t 0). the 
asymptotic solution of Bird [S]. obtained by assuming that 
the velocity distribution in the thin thermal boundary layer 
is linear, can be extended to give the following expression 
for the asymptotic local Nusselt number: 

X-(2/3) 
Nu,u,,c = ~- (9A) ’ ” 

G’-_‘2, 1°C (12) 

The present analysis was performed by the forward-mar- 
ching, implicit method with iteration. in which the con- 
vergent solution of the finite-difference form of the energy 
equation was obtained by the implicit method iteratively on 
each new level of Z. The detailed procedure is to be found 
in ref. [9]. 

The first step was to calculate Vat each nodal point for a 
given value of CT, then to set the boundary condition for 
Z = 0, and to begin the calculation at a very low value of Z 
corresponding to a local Graetz number greater than 5 x IO’. 

I ““‘-” “““I” /“““‘f “- “““‘, I 
7 2 - Triangular array 

,m 

, ,,,,,,, ,,,,,, I _,,,/ ,,,,,, I ,,,,,,, J 
1 ,,“I I 

- -- 21 “,,,,,,I “‘(,,,,I “,,,,,,I “‘,,“I “,,‘,,I “,/,,I 
1 10 102 105 104 105 1 Cl5 

G&C 
FIG. 2. Variation of wall temperature with local Graetz 

number. 

The iterative calculation for each level of Z was tcrmmatcd 
when the absolute values of the differences between the values 
of Tat all the nodal points in the R- and ()-directions before 
and after the iteration were below IO-‘. The calculations 
then advanced to the next level of Z. 

3. RESULTS OF NUMERICAL ANALYSIS 

Figure 2 shows the relationship between the local wall-to- 
peripherally averaged wall temperature difference (T, - l=*) 
at 0 = 0 and 0+ and the local Grdetz number G:,,,,. with the 
pitch-to-diameter ratio CJ as a parameter. It appears that 
peripheral variation of the wall temperature increases with 
the decrease of CJ and G:,,,, because the smaller the pitch and 
the larger the axial distance, the more a cylinder 
is influenced by the presence of the neighboring 
cylinders. 

Figure 3 shows the relationship between the asymptotic 
local wall-to-peripherally averaged wall temperature differ- 
ence (T,- Tw), and the angular coordinate 0. with u as a 
parameter. The wall temperature r, decreases in the cir- 
cumferential direction from a maximum at 0 = 0 (the hot 
spot) to a minimum at 0 = H+. For 0 > 1.1 [TA] or 1.2 [SA], 
T, is essentially uniform around the circumference. 

Figure 4 shows the relationship between the local Nusselt 
number Nu,,, and the local Graetz number G;,,,. with CT as a 
parameter. As seen from the figure. in the region of large 
G;,,,,, Nu,,, increases as CJ is reduced and tends to converge 
toward equation (12) represented by the broken lines. In 
the region of small G-_loo Nu,,, increases and then decreases 
suddenly as r~ is reduced. The reason for this behavior is that, 
as 0 is reduced, the decrease in the flow area increases the 
velocity gradient at the wall (see Fig. 6) and thereby increases 

Nui,, ; below a certain value of 0. however, the velocity of 
fluid in the location of narrow flow area decreases and the 
wall temperature increases at H z 0 (see Fig. 3) and thereby 
decreases Nu,,,. 

Figure 5 shows the comparison between numerical results 
for a uniform wall heat flux @ and those for a uniform wall 

0 e+/ 3 2 e+/ 3 e+ 

FIG. 3. Peripheral variation of asymptotic wall temperature. 
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1 10 102 103 to' 105 106 10' 

G.&C 

FIG. 4. Variation of local Nussclt number with local Graetz number. 

temperature @ [6]. For relatively large CT, the difference 
between the values of Nu,,, in each case is small; as Q 
approaches unity, however, the decrease in Nu,, in the region 
of small Gzloc becomes larger for the case of @ due to the 
increase in the wall temperature at 0 x 0. 

Figure 6 shows the relationship between the asymptotic 
local Nusselt number Nu,,,,, in the region of small local 
Graetz number and the dimensionless spacing between cyl- 
inders C$ (=cr-1) together with the corresponding infor- 
mation obtained from the numerical results of Dwyer-Berry 
[4] and the graphical results of Antonopoulos [S] (see also 
Table 1). In each case, I%%,,,, increases and then decreases 
as o is reduced. {(W/aR);‘~~j-’ in equation (12) is also 
shown in Fig. 6. 

Figure 7 shows the comparison between numerical results 
for a triangular array (the solid lines) and those for a square 
array (the broken lines) at the same values of volume fraction 
of cylinders E given by 

As seen from the figure, in general, Nu,, for a triangular 
array is larger than that for a square array at the same values 
of s, especially for the case of s > 0.5. The difference between 
Nu,, for each array of cylinders is reduced as E is decreased. 

4. CORRELATING EQUATIONS FOR THE 
NUSSELT NUMBER 

A formula suitable for prediction of the local Nusselt 
number can be derived by making use of the asymptotic local 
Nusselt numbers Nu,,,~ given by equation (12) and ivu,,,,, 
obtained by the present numerical anal sis. 

The numerical solutions for {*I - ’ and Nu,,,,., 
can be formulated in the following way (see broken lines in 
Fig. 6) : 

-Triangular army 

102 ----Squar8array 

x 
2 

10 

FIG. 5. Comparison of local Nusselt number for two thermal wall boundary conditions (0, uniform wall 
heat Aux ; 0. uniform wall temperature IS]). 
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--- Eq.(l4) or Eq.(l5) 

10-l I I t s,ud I I il1l1d I I I 
1 o-2 

7-l l 

FE. 6. Variation of asymptotic local Nusselt number and 
dimensionless quantity relevant to velocity gradient at the 
wall with dimensionless spacing between cylinders (0, uni- 

form wall heat flux: 0. uniform wall temperature &I]). 

((i)V/(?R),“‘;-’ = 

1.180(1 +8.241p0’“)/( 

i(C?IW?,, ‘/‘) ’ = 
0.940(1+4.40#” 3yIif 

1+6.374” “) [TA] 
(14) 

I + 2.66@’ =) [SA] 

NU,,.~% = (3.11$“.’ +324$’ ‘)/(I +69.5+‘.4) =f[TA] 

N%,~~, = (3.6@“+32.2~‘5)/(1+9.1~‘z) =,f[SA]. 

(15) 
Substituting equation (14) into equation (12) (and setting 

r(2/3) = 1.354) gives 

Nu,oc,u = 
1.536(1+8.24~” j9) 

A’13(1 +6.37@ 73) 
Gz,;,’ = g G&? [TA] 

N%,,o = 
1.224(1+4.4Or$” j9) 
.4’:‘(1+2.66@““) 

Gzkc3 = g Gz$’ (SA]. 

(16) 

Table 1. Asymptotic local Nusselt number in the region of 
small local Graetz number 

~%,.X 
Triangular array Square array 

fl This paper Ref. [4] This paper Ref. [5] 

1.001 1.42 
1.01 2.14 2.11 
1.02 2.78 2.74 
1 .os 4.92 4.91 
I.1 8.75 8.80 
1.2 11.62 11.74 
1.25 
1.5 7.49 7.58 
2.0 4.41 4.47 
4.0 2.04 - 

1.51 
1.74 - 
2.31 - 
3.11 
4.32 

5.50” 
4.14 5.10” 
3.45 3.44” 
1.67 

“Values obtained by reading off Fig. 3 in ref. [S]. 

FIG. 7. Comparison of local Nusselt number between tri- 
angular and square arrays ofcyhnders. 

As seen from Fig. 4, for 0 < I .1 [TA] or 1.2 [SA], Nuloe 
which shifts from Nu,~~.~ to Nu,,,, draws a logarithmic curve 
with an inflection point. Therefore. the interior division ratio 
pl of Nu,, between Nu,,,,, and Mu,, I is introduced, i.e. 

This equation may be rearranged in the form 

When n is expressed as simple as possible by using the least 
squares method. the following expressions are obtained : 

q = 451G,-,;;‘(J#+0J=’ = (I G& [TA] 

‘I = ~~Gz;,L~~~++“‘~‘~ = aG&. [SA]. i 
(19) 

Substituting equations (I 5), (16) and (19) into equation 
( 18) gives 

Nu,,, = .f: G,, -z (J%)‘.] 
Figure 8 shows a comparison between equation (20) (the 

solid curves) and the numerical solutions (the keyed 
symbols). The agreement is reasonably good showing that 
equation (20) is the satisfactory correlating equation for the 

8 
I 

10 

1 

4 
2 10 

1 
1 10 lo3 104 lo5 106 

GGX 

FIG. 8. Comparison ofcorrelating equation (20) with numeri- 
cal solutions for small pitch-to-diameter ratios. 
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( g / f )’ GZIO, 

FIG. 9. Comparison of correlating equation (22) with numeri- 
cal solutions for large pitch-to-diameter ratios. 

local Nusselt number over the range (r = 1.01-1.1 [TA] or 
e = 1.01-1.2 [SA]. 

On the other hand, for D > 1.1 [TA] or 1.2 [SA], Nu,, 
shifts from Nu,,,,~ to Nu,,,, monotonously. Hence, the 
expression of the following form seems reasonable : 

Nu,, = (NM;,,, + NM:&) “2. (21) 

Substituting equations (15) and (16) into equation (21) 
gives 

Nu,,,/f = { 1 + (g/f)‘Gz:d,‘} I’*. (22) 

Figure 9 indicates that equation (22), represented by the 
solid curves, is quite close to the numerical solutions rep- 
resented by the keyed symbols, and is therefore a satisfactory 
correlating equation for the local Nusselt number over the 
range D = 1.14.0 [TA] or c = 1.24.0 [SA]. 

5. CONCLUDING REMARKS 

A numerical analysis has been carried out to determine the 
characteristics of laminar-flow heat transfer to a fluid flowing 
axially between a triangular array [TA] or a square array [SA] 
of cylinders with a uniform wall heat flux and various pitch- 
to-diameter ratios u (or dimensionless spacings 4 = o- 1). 
The relationship between the local Nusselt number Nu,, and 
the local Graetz number Gz,, was formulated, for D = l.Oll 
1.1 [TA] or cr = 1.01-1.2 [SA] as 

Nu,, = 
g Gzg3 -f 

l+451Gz2,~w+04~~, +f: GUI, a $=‘I 
0 

Nu,, = 
g Gz,;’ - f 

l+94GZ~,.w+ow+f; GzI,~ 

Nu,, = f; Gz,, < cfis)’ PAI. W-U 

and, for D = 1.14.0 [TA] or cr = 1.24.0 [SA] as 

Nu,, = {f’+gl G$,;) 1.2 

where 

f= 
3.1@’ ’ +32441 b 

1+69.5@4 ’ 

.f 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

1.536(1+8.24@ 39) 

’ = (2J3rr’-x) I:‘( 1 +6.37@‘.73) 
VA1 

3.6@“+32.2#” 
z __ 

1+9.1+iL ’ 
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